Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2
نویسنده
چکیده
Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation.
منابع مشابه
In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles
One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restr...
متن کاملEffect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2
Nanocrystalline magnesium hydride powder was synthesized by mechanical milling of MgH2 in a planetary ball mill for various times. The effect of MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area on the hydrogen desorption properties was investigated. A single peak of hydrogen desorption was observed for as-received powder, exhibiting an average parti...
متن کاملIn situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated Mg nanoblades
The near surface structural evolution in dehydrogenation process of air exposed Pd coated Mg nanoblades was characterized in situ from room temperature to 573 K using reflection high energy electron diffraction RHEED . The evolved normalized diffraction intensity and the full width at half maximum of diffraction peaks have been correlated with the growth of crystal and the change in crystal siz...
متن کاملImproved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6
Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH...
متن کاملContamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling
Ultrafine MgH₂ nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized ...
متن کامل